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PREFACE

The Engineering Design Handbooks of the US Army Materiel Command
have evolved over a number of years for the purpose of making readily
available basic information, technical data, and practical guides for the
development of military equipment. While aimed primarily at US Army
materiel, the handbooks serve as authoritative references for needs of other
branches of the Armed Services as well. The present handbook covers timing
systems and components.

This handbook presents both theoretical and practical data pertaining to
design methods and procedures for timing systems and devices. The subjects
covered are precision reference timers, electronic timers, mechanical timers,
pyrotechnic timers, flueric timers, and a few others.

Prepared as an aid to military designers, this handbook should also be of
benefit to scientists and engineers engaged in other related research and
development programs or who have the responsibility for the planning and
interpretation of experiments and tests concerning the performance of
materiel related to timers.

The handbook was prepared by The Franklin Institute Research
Laboratories, Philadelphia, Pennsylvania. It was written for the Engineering
Handbook Office of Duke University, prime contractor to the US Army
Materiel Command. Its preparation was under the technical guidance and
coordination of a special committee with representation from various
agencies of the US Army Materiel Command.

The Engineering Design Handbooks fall into two basic categories, those
approved for release and sale, and those classified for security reasons. The
US Army Materiel Command policy is to release these Engineering Design
Handbooks in accordance with current DOD Directive 7230.7, dated 18
September 1973. All unclassified Handbooks can be obtained from the
National Technical Information Service (NTIS). Procedures for acquiring
these Handbooks follow:

a. All Department of Army activities having need for the Handbooks
must submit their request on an official requisition form (DA Form 17,
dated Jan 70) directly to:

XXXV
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Commander

Letterkenny Army Depot
ATTN: AMXLE-ATD
Chambersburg, PA 17201

(Requests for classified documents must be submitted, with appropriate
“Need to Know” justification, to Letterkenny Army Depot.) DA activities
will pot requisition Handbooks for further free distribution.

b. All other requestors, DOD, Navy, Air Force, Marine Corps, nonmilitary
Government agencies, contractors, private industry, individuals, universities,
and others must purchase these Handbooks from:

National Technical Information Service
Department of Commerce
Springfield, VA 22151

Classified documents may be released on a ‘““Need to Know”’ basis verified by
an official Department of Army representative and processed from Defense
Documentation Center (DDC), ATTN: DDC-TSR, Cameron Station,
Alexandria, VA 22314,

Comments and suggestions on this Handbook are welcome and should be
addressed to:

Commander

US Army Materiel Command
ATTN: AMCRD-TV
Alexandria, VA 22333

(DA Forms 2028, Recommended Changes to Publications, which are
available through normal publications supply channels, may be used for
comments/suggestions.)
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TIMING SYSTEMS AND COMPONENTS

INTRODUCTION

CHAPTER 1

THE NATURE OF TIMING SYSTEMS*

A timer is a programming device; its pur-
pose is to control the time interval between
an input signal and an output event or
eventst. There are four essential components
in all timers: (1) a start system that initiates
the programming action, (2) a power supply
that sustains the timing action, (3) a time base
or regulator, and (4) an output system that
performs the required operation at the end of
the desired time interval.

1-1 PURPOSES AND FACTORS AFFECT-
ING USE

In selecting the components of timing
systems, the designer must first determine the
purpose for which the system is to be used
and the factors influencing the selection of
components. Some of the factors to be
considered in the choice of the basic mecha-
nism are:

(1) Time Range. What timing intervals,
time delays, sequencing, and programming are
to be provided?

(2) Time Variation. Is the system to be

designed to provide a fixed time interval, or is
it to be variable? Is the time period to be
adjustable locally or remotely; manually or
automatically? What is the range of adjust-
ment which will be required?
*Principal contributors to this handbook were Gunther
Cohn, Joseph F. Heffron, Paul F. Mohrbach, Daniel J.
Mullen, Raymond R. Raksnis, Melvin R. Smith, Ramie H.
Thompson, and Robert F. Wood. ’

{Distinct terms for timing systems and components are
defined in the Glossary.

(3) Reliability. What reliability level is
required?

(4) Accuracy. What timing accuracy or
what repeatability is required?

(5) Safety. Must the timer be fail safe?
Must it reset after interruption?

(6) Power Source. Will the timer be pow-
ered by a spring, g-weights, battery, AC
mains, barometric pressure change, or other
means?

(7) Input Signal. What is the input signal?

(8) Output Signal. What is the output
signal? It is a mechanical motion; electronic,
digital, or analog?

(9) Environment. What are the environ-
mental extremes to which the timer will be
exposed, and in which it must operate?

(10) Cost. Will the cost of the timer be
compatible with the cost of the total system?

(11) Maintenance. Is maintenance or repair
required? If so, how can it be facilitated?

1-2 TIMER TYPES

The types of timer discussed in this hand-
book are listed in Table 1-1. When discussing
the various designs, timers are classified into
one of the types shown depending upon the
method used to generate the time base.

1-1
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TABLE 1-1
TIMERS DISCUSSED IN HANDBOOK

Handbook Organization

Intro-
ductory

Timer Type Part Chapters Chapter
Precision Reference

Timers One 2-5 2
Electronic Timers Two 6-11 6
Mechanical Timers Three 12—-16 12
Pyrotechnic Timers Four 17-21 17
Flueric Timers Five 22-25 22
Miscellaneous Timing Six 26, 27

Devices {Electro-
mechanical Timers,
Nuclear Time Base
Generators)

Each part (One to Five) in this handbook
begins with an introductory chapter that
contains detailed definitions pertaining to the
particular timer type, lists of advantages and
disadvantages, and discussions of specific mili-
tary applications, requirements, and auxiliary

equipment used. This same information is
contained in the two chapters comprising Part
Six. Therefore, this general introductory ma-
terial is not included in this chapter. Succeed-
ing chapters in each Part discuss system design
considerations, production techniques, pack-
aging, storing, and shipping procedures, and
component design details to the extent that
those topics apply to the particular timer

type.

1-3 RELATION OF ACCURACY, OUTPUT,
POWER, AND COST

General timer characteristics are listed in
Table 1-2. As a general rule, there is a direct
relationship between the accuracy of a timing

“device and its output power and cost. Those

timing devices that are most accurate, such as
the quartz crystal controlled units and the
cesium beam standards, are likely to have the
least output power and to be the highest in
cost. Those timers that have a lower order of
accuracy, such as the pyrotechnic delays and
the untuned-escapement mechanical timers,
are likely to provide more output power and
to be lower in cost.

TABLE 1-2

GENERAL CHARACTERISTICS OF TIMERS

Precision Electro-
Features Reference Electronic Mechanical Pyrotechnic Flueric chemical
Input to Voltage pulse Voltage Voltage or Voltage, flame, Fluid Voltage,
start mechanical or firing pin pressure chemical
release
Time base Crystal or Oscillator Escapement, Pyrotechnic Oscillator Rate of
atomic motor, burning chemical
tuning fork rate reaction
Timerange 10 secto 103 to Seconds to 1073 to 1to 103 Minutes
years 103 sec days 103 sec sec to
days
Accuracy 1partin 105  0.1% #5% to 1 +10% 1% +4-10%
to 1 part " partin 10°
in 10'2
Output Voltage pulse Voltage Mechanical Flame Fluid Chemical
or time pressure, reaction, °
interval voltage voltage,
chemical

~




14 MILITARY APPLICATIONS

All of the timing systems and components
discussed in this handbook are of interest to
the military. Many of th9 timers are com-
ponents of ammunition, fuzing, or control
devices. Particularly in fuzes, where delays are
crucial to safe and effective performance,
timers are almost always present. Timers and
time delay devices for various fuze types are

covered in different chapters, depending on .

the type of timer used. Timers for most safing
and arming devices, being mechanical, are
discussed in Chapter 13. If information is
squght about a particular fuze in this hand-
book, it is best located through the Index.

Since this is a timer handbook, fuzes and -

fuze explosive components are discussed here-

AMCP 706-205

in only to the extent that knowledge of their
operation aids the design of timing systems
and components. For design details of fuzes
and their components, see the following
references:

(1) AMCP 706-179, Engineering Design
Handbook, Explosive Trains.

(2) AMCP 706-210, Engineering Design
Handbook, Fuzes.

(3) MIL-HDBK-137, Fuze Catalog, Depart-
ment of Defense, 20 February 1970.
Vol. 1, Current Fuzes (U) (Confidential
report).
Vol. 2, Obsolete and Terminated Fuzes.
Vol. 3, Fuze Explosive Components (U)
(Confidential report).

1-3/1-4
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PART ONE — PRECISION REFERENCE TIMERS

CHAPTER 2

INTRODUCTION TO PRECISION REFERENCE TIMERS

2-1 TIME STANDARDS

Timekeeping has two distinct aspects: de-
termination of date (or epoch) and determina-
tion of interval. Date is concerned with when
an event occurred whereas interval is some
fixed multiple or fraction of the unit of time
and is independent of a starting point! *. For
measurement purposes, an accurate time scale
is set up so that, from a chosen origin point, a
constant unit is laid off until the resulting
scale extends over the interval of interest.

A system of time measurement requires
regularly occurring, uniform, periodic phe-
nomena as a reference base. Since man’s
earliest concern with time was linked with the
passing of the days and nights, a system of
time measurement evolved that was based on
rotation of the earth. The rate of the rotation
is determined by measuring the motion of
some point on the earth’s surface with respect
to some celestial object or position. It was
established that all time measurements based
on the rotation of the earth are subject to
nonuniformity due to periodic and irregular
variations in the speed of rotation. These
variations are detectable and compensatable,
but the corrections, of necessity, must be
made after the occurrence of the event. Time
systems of this type are now known as

rotational or nonuniform time whereas sys- -

tems of measurement that are independent of
the earthly day are called uniform time. A
number of the time systems or standards of

*Superscript numbers refer to References listed at the end of
each chapter. .

time which have been developed are described
in the paragraphs that follow.

2-1.1 APPARENT SOLAR TIME

The apparent solar day is the interval of
time between two successive lower transits of
the sun’s center over the same meridian,
where a meridian is defined as a great circle
passing through a given point and the two
poles. Hence, a meridian is the intersection of
a plane, through the poles and the given point,
with the surface of the earth?. A system has
been established of 24 standard meridians
originating in Greenwich, England, and spaced
every 15 deg about the surface of the earth.
This system is used for navigational purposes
and for time standardization. A lower transit
occurs at apparent midnight. However, due in
part to the fact that the earth’s orbit is
elliptical rather than circular and the orbital
plane does not coincide with the plane of the
equator, the apparent solar days vary in
length.

2-1.2 MEAN SOLAR TIME

The system of mean solar time was devised
to overcome the problem of variable day
length. It is, however, actually based on
sidereal time. Each day is of the same length,
this length being equal to the average length
of all the days in a solar year. The effect is the
same as if the earth’s orbit were circular and
in the same plane as the equator. There is no
means of observing mean solar time directly;
nor can the apparent solar time be determined

2-1
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directly with adequate accuracy. In practice
sidereal time is observed, and mean and
apparent solar times are calculated. The dif-
ference between apparent solar time, and
mean solar time varies approximately * 16
min in the course of a year. This difference is
known as the equation of time. It should be
noted that, while mean solar days are of
uniform length, they are approximately 4 min
longer than the period of the earth’s rotation®
with respect to a fixed star.

2-1.3 SIDEREAL TIME

The system of sidereal time avoids some of
the problems caused by the earth revolving
around the sun, seasonal and other changes,
and provides a convenient method of locating
celestial bodies. A sidereal day is defined as
the interval between two successive upper
transits of the vernal equinox over the same
meridian*. The vernal equinox is formed by
the intersection of the plane of the ecliptic
with the plane of the earth’s equator. This
intersection is also called the “First Point of
Aries” and is a fundamental reference point
for locating celestial bodies! . However, due to
the complex motion of the earth’s poles, the
vernal equinox does not remain fixed and
consequently the sidereal day is not only
somewhat shorter than the period of the
earth’s rotation but is also of variable length.
These effects are small, and suitable correc-
tions are possible.

2-1.4 UNIVERSAL TIME

Universal Time (UT) closely approximates
mean solar time but in practice is derived
from sidereal time which, in tumn, is deter-
mined from the meridian transits of selected
stars. Universal time is, therefore, a form of
rotational time and is subject to the attendant
irregularities. Over the years there have been
improvements in detecting and predicting the
variations in the earth’s rotation, and uni-
versal time has been revised accordingly.
Consequently there are now several subdivi-
sions of this system3:

2-2

(1) UTy — Universal time calculated di-
Jectly from observed sidereal time. This mea-
sure of universal time contains irregularities
due to polar motions as well as rotational
variations.

(2) UT, - Universal time derived by cor-
rections of UT, for observed polar motion.
However, irregularities due to variations in
rotation remain.

(3) UT, — Universal time derived by cor-
recting UT, for both observed polar motions
and extrapolated seasonal variation in the rate
of the earth’s rotation. This measure of
universal time is virtually free of nonuni-
formity due to periodic changes in rotation
but irregularities caused by irregular variation
in rotation are not wholly corrected.

(4) UTC - Internationally Coordinated
Universal Time (UTC) approximates UT, and
is used as the basis for all civil time keeping.
As instituted on 1 Jan 1972, coordinated
universal time proceeds at the same rate as
atomic time (see par. 2-1.6) and differs from
the latter by an exact multiple of one atomic
second. Step changes in UTC of precisely one
second (leap second) are introduced on 1 Jan
and/or 1 July when required to keep the
difference between UTC and UT, to less than
% 0.7 sec. The time signal emitted by the HF
standard time and frequency transmitters
(such as WWV) are coded to permit the users
of these signals to determine the difference to
UTC-UT, to within 0.1 sec.

2-1.5 EPHEMERIS TIME

Ephemeris time is based on the revolution
of the earth around the sun. It is obtained in
practice from observations of the motion of
the moon about the earth. In October 1956,
the International Committee of Weights and
Measures defined the second of ephemeris
time as the fraction 1/31,556,925.9747 of the
tropical year for January 0, 1900 at 12 hours
ephemeris time (January 0, 1900 = December
31, 1899)!. Since the unit of ephemeris time




is thus of constant length by definition,
ephemeris time is a uniform time scale.

2-1.6 ATOMIC TIME

When an electron makes a transition from
one energy state to another in an atom, it
absorbs or emits energy. The amount of
energy absorbed or emitted is equal to the
difference in the energy of the two states. If
the absorption or emission is in the form of
electromagnetic energy (photons), its fre-
quency is proportional to the change in
electron energy. This means that an electron
making a given transition in a given atom
emits or absorbs a definite amount of energy
at a specific frequency. It is this particular
characteristic of atoms that serves as the basis
for atomic clocks*. The most extensively
developed atomic oscillator currently used as
a time standard is the cesium beam resonator.
This device utilizes a specific transition of the
cesium atom. The frequency of oscillation has
been established, in 1956, as 9,192,631,770
cycles per ephemeris second. Atomic time is
the time based on this transition. The inter-
nationally coordinated atomic time scale is
designated IAT. One second in the inter-
national systems of units has been defined, in
1967, as the duration of 9,192,631,770 cycles
of this specific transition of the cesium atom.
The IAT second is thus equal to the ephem-
eris second to within the errors in the
determination of the latter. In the course of
observations extending over many years, no
difference in the rates of the atomic vs the
ephemeris time scales has yet been found.
Except for a (constant) difference in the
origins of these two time scales, atomic time
and ephemeris time are thus synonymous.
From a practical standpoint, however, atomic
time has all but replaced ephemeris time
because of its vastly superior accessibility.

2-1.7 US STANDARD TIME

US Standard Time differs from the inter-
nationally coordinated universal time by an
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integral number of hours. The Master clock of
the US Naval Observatory, Washington,
D.C., determines Standard Time for the
United States. The master clock consists of an
atomic resonator, a quartz crystal oscillator,
and a clock movement. The Naval Observato-
ry determines universal time and ephemeris
time from astronomical observations, and
publishes data that enable one to obtain the
different kinds of time used in geodesy,
navigation, and scientific work. The various
clocks and frequency standards used in gen-
eration of signals for precision timers are
discussed in par. 3-1.

2-2 FREQUENCY STANDARDS

Time standards and frequency standards
are based upon dual aspects of the same
phenomenon®. The reciprocal of time interval
is frequency. As a practical matter, a standard
of frequency can serve as the basis for time
measurement. To avoid errors, when a fre-
quency standard is used to maintain time
(either interval or date) care must be taken to
reference the frequency to the time scale of
interest. If frequency is quoted in the units
“hertz’”’, the corresponding time interval will
be in seconds, the unit of time in the
international system of measure. The present
international standard is based on the transi-
tion of the cesium (Cs) atom as discussed in
par. 2-1.6. This Cs transition is also the
fundamental reference for a frequency mea-
surement. A Cs frequency standard consists
basically of a quartz crystal oscillator, a
synthesizer that translates the crystal fre-
quency to the Cs frequency, a Cs beam tube,
and a servo feedback loop that adjusts the
crystal frequency so that the synthesizer
output is always at the resonance frequency
of the Cs atoms. If the standard is operating
on the atomic time scale, one million cycles
of the 1 MHz signal describe one second.

It is not necessary to have physical access
to an atomic frequency standard to obtain a
reference for accurate frequency measure-
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ments. A local crystal oscillator can be con-
trolled or monitored by suitable standard
frequency and time signal emissions, provided
these emissions are controlled by atomic
clocks at the transmitter.

A local frequency standard can be main-
tained to within one part in 101° or better by
comparison of its relative phase or time
difference to that of a received very low
frequency (VLF) or high frequency (HF)
carrier*. Any one of a number of monitoring
systems may be chosen to make this compari-
son possible, depending on the degree of
precision required for the relative phase mea-
surement. For the greatest precision, the local
standard must have a low drift that is predict-
able to within a few parts in 10*® over several
days'. Averaging the time from days to
months may be required to obtain very high
accuracies.

Exceptions are the transmissions from the
Loran-C system (see par. 24.1(2)) if received
within about 1500 miles from the transmitter.
It is possible to transfer the stability of the
master clock that controls the transmission to
the local oscillator to within 1 X 107! on a
continuous basis, and averaging times are in
the order of 100 sec. Anyone receiving these
signals, which are controlled by the US
Naval Observatory frequency and time stan-
dards, has access to one of the most precise
frequency standards available. (Previous fre-
quency offsets — 3 parts in 10® from a
nominal value of 100 kHz — in all standard
transmissions were abolished on 1 Jan. 1972.)

2.3 DISCUSSION OF REQUIRED PARAM-
ETERS |

Several parameters are used to compare the
performance qualities of precision reference
timers. Any discussion of this subject requires
a basic understanding of the following
termsS :

(1) Accuracy. The degree to which the
frequency of an oscillator is the same as the

24

frequency of an accepted primary standard or
the degree to which the frequency of an
oscillator corresponds to the accepted defini-
tion of frequency. The particular reference
standard or the particular definition of fre-
quency must be included in the statement of
accuracy.

(2) Reproducibility. The degree to which
an oscillator of a given type will produce the
same frequency from unit to unit and from
one occasion of operation to another. In
general, the degree to which the frequency of
an oscillator may be set by a calibration
procedure is included within this definition of
reproducibility.

(3) Intrinsic Reproducibility. The degree
to which an oscillator will reproduce a given
frequency without the need for calibrating
adjustments either during manufacture or
afterward. This quality is a characteristic of
an apparatus design and not a characteristic of
a resonance.

(4) Stability. The degree to which an
oscillator will produce the same frequency
over a period of time once continuous opera-
tion has been established. The specification of
a stability value requires a statement of the
time interval involved in the measurement,
and the complete specification constitutes a
functional relationship for which the measur-
ing interval is the independent variable.

A frequency standard must provide a
stable, spectrally pure signal if it is to yield a
narrow spectrum after multiplication to the
microwave region. The high signal-to-noise
ratio requirements for quality communication
systems have been met by the specification of
narrow band widths, which in turn require
stable narrow-band signals.

The quality of a precision quartz oscillator
usually is expressed in terms of long-term and
short-term stability. Long-term stability is
sometimes called aging rate and usually is
expressed in fractional parts per unit time, as




“3 parts in 10° per day”. It refers to slow
changes with time in average frequency, aris-
ing usually from secular changes in the resona-
tor or other elements of the oscillator. Short-
term stability refers to changes in average
frequency over a time span sufficiently short
that long-term effects may be neglected.

(5) Spectral Purity. The spectral purity
expresses the same information in the fre-
quency domain as that expressed by stability
in the time domain. A very crude oscillator
will have a reasonably good spectrum at the
frequency of oscillation; but, with frequency
multiplication, the spectrum rapidly degrades.
It is, therefore, necessary to have an ex-
tremely well-defined spectrum at the outset
so that further multiplication into the micro-
wave region will maintain acceptable quality.
A simple way to improve spectral purity is to
put the oscillator signal through a narrow
band-pass filter before multiplication, or to
phase lock a low noise oscillator to the
multiplied signal.

2-4 MILITARY APPLICATIONS
24.1 NAVIGATION, POSITION FINDING

During peacetime the navigation of a mili-

tary aircraft on a routine flight differs little -

from that of a similar nonmilitary aircraft.
However, some military operations require
high selective accuracy. Examples are a tanker
seeking to rendezvous with an aircraft it is to
replenish, a reconnaissance aircraft returning
to its carrier, a fighter providing close support
at front lines, an emergency supply aircraft,
or one seeking survivors in a lifeboat. In
addition many military missions require a
passive system to avoid betraying one’s posi-
tion, and vulnerability to manmade distur-
bances (jamming) must be considered. Similar
conditions exist for a ship at sea.

Position finding or fixing is the determina-
tion of the position of the craft (a fix)
without reference to any former position. To
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accomplish this with sufficient accuracy, one
must depend on available precision reference
signals:

(1) Loran. Loran (LOng RAnge Naviga-
tion) was developed during World War II, at
the MIT Radiation Laboratory, to provide
ships and aircraft with a means of precise
navigation. Basically, a Loran chain consists
of a master and two or more slave stations. A
pulse transmitted from the master station is
received via ground wave by a slave station,
which, in turn, transmits its pulse at a fixed
time later. This fixed time, known as the
coding delay, is kept constant by monitor
stations that steer the chain. The time differ-
ence between reception of a master-slave
pulse pair determines a hyperbolic line; the
intersection of two such lines gives position.

Standard Loran, also known as Loran-A,
operates in the 2-MHz band”. Each station
transmits pulses of 45-usec duration, which
occupy a band width of 75 kHz.

(2) Loran-C. Loran-C was developed to
extend Loran coverage with fewer stations.
The Loran-C system, a pulsed radio navigation
system is operated on a 100-kHz carrier by
the US Coast Guard, and offers a means for
precision transfer of time. Clock synchroniza-
tion to % 1 usec is possible within range of the
east coast Loran-C chain. All Loran-C stations
are now controlled by atomic clock standards
and the emissions are monitored by the U S
Naval Observatory!. Table 2-17 lists the
locations of 30 Loran-C stations presently in
operation. Loran-C signals are usable for
ground wave reception to about 1500 km
landward, 3000 km seaward, and about
10,000 km skyward at reduced accuracy’.

Changes in Loran-C station emissions are
published in “Time Service Announcements”
published by the U S Naval Observatory. Ref.
8 is a discussion of the means of using
Loran-C and includes the possible sources of
error.
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Figure 2-1. Components of Airborne Air Traffic Control Equipment®+!°

242 AIR TRAFFIC CONTROL

In air traffic control, military aircraft may
use TACAN (Tactical Aircraft Navigation
System) navigation equipment. TACAN is a
military omnibearing and distance measure-
ment system using the same pulses and
frequencies for the distance measurement
function as the Standard DME (Distance
Measuring Equipment) system®. It is of the
polar-coordinate type, i.e., there is a bearing
facility that provides on the aircraft a meter
indication of its direction in degrees of
bearing from the ground beacon chosen by
the pilot. There is also a distance facility that
provides on the aircraft a meter indication in
nautical miles of its distance from the ground
beacon. Fig. 2-1!% shows the components of
airborne  TACAN equipment such as the
AN/ARN-21. A crystal-controlled 4044-Hz
oscillator is used as a yardstick or time
reference. In essence, the time interval be-
tween interrogation and reply is measured in
terms of the corresponding number of cycles
and fractions of a cycle of the 4044-Hz
reference wave. The crystal controlled oscil-
lator generates range markers that serve to
measure microsecond intervals for the ac-
curate measurement of distance!?®.

2-4.3 COMMUNICATIONS

Modern military communication systems in
which frequency stability of the transmitting
and receiving equipment are supplied by a
stable clock or precise interval control include
synchronous digital transmission, switching,
terminal, and security equipment!?!.

Military applications require operation un-
der severe environmental conditions, and
usually impose restrictions on size and weight
as well, particularly in airborne equipment. In
mobile systems, Doppler shifts and time
variations due to changing transmission path
lengths must be compensated for by either
automatic correction circuits or by manual
readjustment of local equipment? 2.

As an example, Table 2-2'® summarizes
the present and future frequency control
requirements for SSB equipment. To obtain
these requirements, a high degree of fre-
quency-temperature stability must be ob-
tained for the crystal oscillator along with low
aging for the crystals and improvements in the
frequency synthesizers.

The TRI-TAC communication system is
planned to provide the Armed Forces with
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TABLE 2-2
REFERENCE OSCILLATOR REQUIREMENTS!3

Future
ss8
Present Secure
SSB Voice  Voice
Af (Total) + 40 Hz + 6 Hz
Af/Equipment +20 Hz + 25 Hz
Af (HF, 30MHz) ' g 7% 107 8.3X 10°®
f i
éfi(VHF, 76 MHz) 2.6 X 1077 3.3x10®

Temperature Range —40° to +76°C —40° to +75°C
Time (for 26 wk 120 wk

frequency re-
calibration)

the capability of a fully tactical, automatical-
ly switched, digital, secure communications
network. Three methods for system synchro-
nization other than the master-slave relation-
ship are frequency averaging, independent
atomic clocks, and bit stuffing?4.

A new multifunction avionic system based
on the use of accurately synchronized clocks
at each terminal of the system has been
proposed! 5. The system must be synchro-
nized to the order of 10 to 100 nsec if range
accuracy of 10 to 100 ft is required. These
accuracies are currently achievable, both.by
atomic frequency standards and by less ac-
curate crystal standards in systems where it is

.‘practical to resynchronize the remote station
clocks to a common system time.

2-4.4 \FF (IDENTIFICATION, FRIEND OR
FOE)

Secondary radar, originally used during
World War II to identify friendly aircraft and
ships, was known as IFF. Each vehicle was
equipped with a pulse transponder that, upon
receiving a radar pulse, replied with a specially
coded group of pulses. These pulses, displayed
on a radar screen next to the radar reply,
indicated that the reply was from a friend.
The pulse codes frequently were changed to
guard against enemy use of captured equip-
ment.

Secondary surveillance radar, or radar
beacon, is an updated version of this system.
Secondary surveillance radar uses equipment
on the ground to transmit an interrogation
signal to the aircraft that transmits a response
back to the ground station. If the transponder
in the aircraft is set to respond, it transmits a
signal to the ground equipment that is pro-
cessed and displayed on a radar screen. The
interrogation pulse groups consist of several
modes (Fig. 2-2?), the selection of which is
either controlled by the ground operator or
automatically selected in a mixed sequence.
Before the transmitter of the airborne trans-
ponder will reply, the proper pulse pairs must
be received and processed within the trans-
ponder. The transponder reply codes are
shown in Fig. 2-3°. Two framing pulses
spaced 20.3 usec apart with 12 information
pulses between them provide the basic reply
code. Thus, the code system is capable of
producing 4096 different coded identification
replies. In addition to the information pulses,
a special position identification (SPI) pulse
may be used with any of the 4096 codes upon
request?.
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Mode Application Pulse spacing (microseconds)

-3

1 Military (IFF)

2 Military (IFF)

it

e—s8—

3/A Military/civil (ATC) I | n! I I

ke 17
B Civil (ATC) 1
e 21
c Civil (altitude) _ﬂ_,_‘
£
e 25
D Civil wnassigned) [ ]

Figure 2-2. Interrogation Pulse Modes Used on
Secondary Surveillance Radar®+1°

| (N
64 reply codes | \ i ] | i
| ! ! [ | | | I
! ¢ I B | _ | |r
SO | 1
reply ! ] [ ] [ | | | 1 | : ]
S N R B B I T T I I
| [ |
Pulse spacing : I ! | I : sl7 1 1 Io 1I ! I 18I85 2o|3 24|65
% 145 29 435 58 725 5 16 13.05 45 1595 174 . . X
(microseconds) ? ) | ) ) ) ) : | | ) ) ) | I
[ | I { ! l r f | | | I | | i
I N B { ! N !
Identification I ‘ | | I | I I l | | l ! Special position
anthmetic value | 1,0 lOlOO 210 20‘00 4,0 40lOO 1?0 .1 2?0 ? 4?0 ? ‘ identification
| L | | | | | Lo | [ |
| l l | | I | | | | | | l | |
I | | | | I i | I | | | I | I
Pulse Framing C, A, C, A, Ce A, B, D, B, D, B, D¢ Framing Special position
nomenclature pulse pulse identification

Figure 2-3. Transponder Reply Codes Used on
Secondary Surveillance Radar® -
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CHAPTER 3

SIGNAL GENERATION SYSTEMS

3-1 INTRODUCTION

Recent advances in the accuracy of time
keeping have been due largely to the out-
standing developments in precision clocks.
The modern quartz crystals and atomic clocks

attain a standard of precision considerably in

advance of the best pendulum clocks, and
their development has led to the elimination
of the pendulum clock in major time-keeping
observatories and in time service throughout
the world. Two types of motion have been
used to produce these clocks, viz., the
mechanical vibrations of quartz and the oscil-
lations of individual atoms?.

The most stable frequency standards are
the atomic clocks, specifically cesium beam,
rubidium gas cell, or hydrogen maser. Their
frequency stability is compared in Table 3-1.
Since the comparison is at constant ambient
conditions, it does not indicate at least one
other important factor, namely that the
stability of rubidium cells is affected much
more by the temperature than is cesium. The
cesium frequency standard has the highest
intrinsic reproducibility and frequently serves
as a primary standard.

The family of quartz crystal oscillators
forms the secondary standards. The frequency
stability of these oscillators varies, depending
on temperature compensation or control fea-
tures (see Table 3-1 state of the art as of
1971).

In addition to these frequency standards,
the tuning fork is discussed in par. 3-3.
Tuning forks can be made in a package of 0.7
in.> with a frequency stability of + 0.001%
when controlled in an oven.

3-1.1 DEFINITIONS

3-1.1.1 Clocks

The quartz-crystal clock and atomic clock
are described:

(1) Quartzcrystal Clock. A standard
quartz clock is a precision time piece that
provides a series of electrical timing pulses at
intervals of seconds or tenths of seconds;
some applications require minutes to be
marked, or to indicate the particular time of
day. Most quartz clocks employ a crystal
designed to operate at a nominal frequency of
5 MHz although frequencies of 1 MHz, 2.5
MHz, and 100 kHz are also much in use.
Frequency division may be entirely electron-
ic, or electronic in the first stages and then
electromechanical®.

(2) Atomic Clock: An atomic -clock is a
precision time piece controlled by an atomic.
or molecular spectral line®. These small elec-
trical and magnetic vibrations are almost
wholly independent of normal external condi-
tions; and, because their frequencies are a
property of the atoms themselves, they are
identical for all atoms of the same kind.

In one of the most commonly used types

of atomic clocks, the atoms used are those of

. cesium. However, many atomic clocks of

several different kinds now have been made

and are available commercially3. They enable

- time intervals to be measured with an ac-

curacy approach 1 part in 10'2 time units or

“0.1 psec per day. Clocks throughout the
I world can thus be synchronized to 1 usec.
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TABLE 31

CHARACTERISTICS OF ATOMIC AND QUARTZ CRYSTAL FREQUENCY STANDARDS

Atomic Clocks

Cesium beam
Rubidium gas cell
Hydrogen maser

Quartz Crystalsd ~

Crystal Oscillator
Temperature Range
—-55° to +105° C
—-40° 10+ 90° C
0°to+ 50°C

Temperature Compensated
Crystal Oscillator (TCXO)
—~55° to + 105°C
-40°to+ 75°C

0°to+ 50°C

Temperature Controlled
Crystal Oscillator
(Single Oven)
—-55° to + 75°C
—40° to + 75°C

0° to + 50°C

Temperature Controlled
Crystal Oscillator
{Double Oven)

.0° to +50°C

8¢rom Ref. 2
Output Power = 1 mW
€At lowest ambient temperature

Frequency Stability
(one day, constant

ambient conditions) Volume
2x10'3 800-2000 in.?
107 80-1500 in.?
2x 10714 27 i
Frequency Stability
Over Temperature Range Power Consumption, Volume,
+10°¢ mwW in.2
4-25. 10-50b 0.25-3
25
15
4
0.1-10 35-100b 1-25
05-10
0.3-10
0.1-—1
0.005-0.1 1-10 we 7-35
0.01-0.1
0.01-0.1
0.005
0.001-0.0001 5-15 we 1000-2000




3-1.1.2 Frequency Standards

A frequency standard is an atomic clock
that is used in frequency control because of
its greater precision and accuracy. Basic to the
choice of these atomic standards is their
unprecedented frequency stability. For in-
stance, the cesium and hydrogen atomic
standards require no other reference for cali-
bration. Three other devices that could be
used as frequency standards are (1) thallium
beam, (2) ammonia maser, and (3) rubidium
maser. Atomic frequency standards operate
by one of two means: (1) by determining the
frequency corresponding to dipole inversion
in a beam of atoms, or (2) by determining the
frequency corresponding to a transition be-
tween the energy levels of atoms in a fixed
sample.

3-1.2 PRIMARY STANDARDS

A primary frequency standard is one that
provides a frequency that is well-defined
without reference to any external standard. In
all atomic frequency standards there are
means for (1) selecting atoms in a certain
energy state, (2) enabling long life times in
that state, (3) exposing these atoms to micro-
wave energy, and (4) detecting the results?.
Two primary standards that have reached a
high state of development are the hydrogen
maser and the cesium beam. The cesium beam
device uses passive atomic resonators to steer
high quality quartz oscillators via feedback
circuits. The hydrogen maser, an active de-
vice, derives its signal from stimulated emis-
sion of microwave energy amplified by elec-
tronic means to a useful power level.

3-1.3 SECONDARY STANDARDS

Secondary frequency standards are those
that must be referenced to an accepted source
such as a primary standard. Quartz crystal
oscillators are used widely as high-quality
secondary standards. The cesium beam device
makes use of slaved quartz crystal oscillators.
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Another secondary standard is the rubidium
vapor standard. It is a secondary standard
because it must be calibrated against a pri-
mary standard during construction; it is not
self-calibrating® .

3-1.4 BASIC OPERATING PRINCIPLES
3-1.4.1 Quartz Crystal Clock

The resonant element of a quartz clock,
usually called the crystal, is a bar, plate, or
ring of quartz. To have it vibrate at a desired
frequency in a particular mode, it is cut to
certain dimensions and in a selected orienta-
tion to the various axes of the natural quartz
crystal. The resonator assembly includes
supports for the crystal and electrodes
through which energy is supplied to the
crystal to maintain the vibration using the
piezoelectric property of crystalline quartz.
The crystal is kept in oscillation by a main-
taining amplifier connected to the electrodes
of the resonator. The stability of the fre-
quency of oscillation and the uniformity of
the rate of the clock are primarily related to
the quality of the quartz resonator and to

-characteristics of the maintaining amplifier,

its power supply, and associated environ-
mental control components. For more in-
formation on quartz crystal oscillators, see
par. 3-2.

3-1.4.2 Atomic Clock

The cesium atomic beam uses the hyperfine
transition of the cesium atom. The atoms pass
through a system of magnets and are de-
flected away from a detector unless transi-
tions are induced by an applied field derived
from a quartz clock and alternating at the
spectral line frequency. Any deviation from
the spectral line frequency produces an error
signal that is applied to the quartz oscillator
to bring it back to its correct value. The
nominal value of the quartz oscillator is
usually 5 MHz and a fairly complex frequency
converter is required between the clock and
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the spectral line frequency®. Atomic reso-
nance devices are discussed in more detail in
par. 3-4.

3-2 QUARTZ CRYSTAL OSCILLATORS

Crystalline quartz has great mechanical and
chemical stability, and a high mechanical Q
(which means that a small amount of energy
is needed to sustain oscillation). The piezo-
electric properties of quartz make it conve-
nient for use in an oscillator circuit. Stressing
of quartz and certain other crystals produces
an electric potential at the electrodes.
Conversely, placing each crystal in an electric
field deforms them a small amount propor-
tional to field strength and polarity. This
property is known as the piezoelectric effect.

In practice, a quartz resonator is imounted
between two electrodes, presently thin
metallic coatings deposited directly on the
crystal by evaporation. Mechanical support is
provided at places on the crystal so chosen as
to avoid, to the greatest extent possible,
inhibition of the desired vibration while
suppressing any unwanted vibrations. A
correct alternating voltage applied across the
crystal causes it to vibrate at a frequency such
that mechanical resonance exists within the
crystal. Details on the various shapes and their
modes of vibration are discussed in par. 4-2.
The various types of quartz crystal controlled
oscillators are discussed in the paragraphs that
follow. Oscillators for military equipment are
covered by a military specification®. For
frequency stabilities, see Table 3-1.

3-2.1 GENERAL PURPOSE OSCILLATOR

The simplest crystal oscillator uses neither
temperature control nor temperature compen-
sation techniques (see Fig. 3-1°). An ampli-
fier, either vacuum tube or transistor type, is
used with some degree of selectivity depend-
ing upon the type of crystal unit used. Degree
of isolation from the load is dependent upon
the output requirements and amount of
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Figure 3-1. General Purpose Crystal
Controlled Oscillator®

stability required. In this case, the main cause
of instability is temperature.

Crystal aging or drift is only a problem
with this form of oscillator because it is small
compared with changes due to temperature
and can be absorbed by periodic adjustment
of the circuit phase. For stability data, see
Table 3-1. More information is contained in
Ref. 7 and in a design handbook, Ref. 8.

3-2.2 TEMPERATURE COMPENSATED
CRYSTAL OSCILLATOR (TCXO)

To obtain better stability than that possible
with the basic crystal oscillator, TCXO can be
used?. This principle is shown in Fig. 3-26.
The increased stability, however, is at the
expense of added circuit complexity more
volume, and higher power consumption. Fig.
3-3% shows a simple compensation circuit.
Frequency deviation of 1 part in 10® over a
temperature range of —30° to 60°C has been
shown possible with a 30 MHz overtone

TEMP SENS
REACTANCE

AM LIMITER ISOL.

Figure 3-2. Temperature Compensated
Crystal Oscillator (TCX0)®




AT-type unit. With more sophisticated design
of the sensing network, 1 part in 107 in the
temperature range —30° to 50° at 3 MHz has
been reported®. Fig. 3-4% shows the fre-
quency-temperature curve for an uncompen-
sated and, for comparison, a compensated 25
MHz crystal unit. A bibliography on TCXO’s
follows the references at the end of this
chapter.

Added circuit complexity for temperature
compensation consists of a varactor, a
thermistor-resistor network, and a voltage
regulator. The latter is added because
regulation of 100 or 1000 to 1 is needed,
depending on how good the voltage source is
and the degree of frequency stability needed
(see Fig. 4-1(B)).

The resistance of the thermistor-resistor
network is temperature sensitive so that a
voltage which is a function of temperature is
supplied to the varactor. This voltage
variation changes the capacitance value of the
varactor and thus the load capacitance of the
crystal. This load capacitance change varies
the crystal oscillator frequency in a predeter-
mined manner to compensate for the crystal
frequency-temperature variation. Depending
on the stability desired, the reactance change
of the varactor also must compensate for
temperature-induced changes of the voltage
regulator, active device, circuit elements, and
buffer amplifiers. The choice of values in the
thermistor-resistor network is quite compli-
cated and usually requires computer optimiza-
tion techniques to determine the network
parameters.

THERMISTOR CRYSTAL
il HE QT
= VARIABLE

CAPACI TANCE

DIODE

Dc

1}
o ) Ll

Figure 3-3. Temperature Compensation
Circuit®
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Figure 3-4. Effect of Compensation on the
Frequency of a 25-MHz Crystal Unit®

The best angle of cut for the crystal
depends on the stability needed and the
temperature range. A compromise must be
reached between the crystal with a more
linear frequency-temperature slope between
turning points with its greater frequency
change and the crystal with. a smaller
frequency change but a more nonlinear slope.
The more linear slope is easier to compensate
but it must be compensated more precisely
because of the larger frequency change.
Another consideration is the location of the
turnover points because synthesis of the
compensating reactance is simplified when
only one turn-over occurs in the temperature
range of interest.

To obtain good frequency stability as a
function of temperature, especially under
temperature transient conditions, it is neces-
sary that good thermal tracking exist among
the crystal, varactor, and thermistors. If
thermal gradients exist among these compo-
nents, a large frequency change —on the
order of a few parts in 10®° — can take place
under transient conditions. Also, the crystal
-unit exhibits transient behavior during tem-
perature change, due to thermal gradients

3-5



AMCP 706-205

within the quartz plate that can be as large as
a few parts in 10° for rapid temperature
changes.

The TCXO exhibits good frequency accura-
cy from turn-on because all components are
at the same temperature whether power is
being supplied or not and the slight
temperature rise due to turn-on has only
minimal effect on frequency. In certain
applications this feature is of major impor-
tance.

The aging of a TCXO is dependent
primarily on the crystal and presently is
between 5 X 1078 /wk to 5 X 1071°/wk for
the fundamental mode units used. When
dealing with the TCXO, as with the oven
crystal oscillator discussed in par. 3-2.3, the
overall frequency tolerance that can be
expected is arrived at by adding the aging,
over whatever time period is applicable, to the
frequency-temperature stability. For instance,
the 5 X 1077 frequency-temperature stability
coupled with an aging of 1 X 107® /wk gives an
overall frequency tolerance of 1 X 107 for 1
yI.

3-23 TEMPERATURE CONTROLLED OS-
CILLATOR

For applications calling for a stability
better than that obtainable with a TCXO, a
temperature controlled crystal oscillator
(oven oscillator) must be used?. The ovens
used are of two general types — thermostati-
cally controlled and proportionally con-
trolled. The thermostatically controlled oven
uses a bimetallic or mercury thermostat to
sense the temperature and supplies heat to the
oven on an “on-off” basis. This gives simple
control but normally is restricted to less
precise frequency control and therefore is not
covered here. The proportionally controlled
type uses a resistance temperature sensor and
by bridge circuitry supplies heat on a
continuous basis. This results in better
temperature control, thus higher precision
frequency control.

3-6

The improved stability over the TCXO
requires more space and considerably higher
power consumption. In addition, there is
added circuit complexity over the basic
crystal oscillator (see Fig. 4-1(C)). The oven
circuitry is composed of a resistance bridge,
amplifier, transistor controller, and heater
winding. A voltage regulator and multistage
buffer amplifier are used and an automatic
gain control circuit is needed to keep the
crystal drive constant. One arm of the
resistance bridge is the sensor, a specially
wound resistor or a thermistor whose
resistance value is a function of temperature.
Any temperature change in the oven is
detected by this sensor resulting in bridge
unbalance. The bridge voltage output is
amplified and operates on the transistor
controller, causing more or less current to
flow through the heater winding, thus
regulating the temperature. There should be
good thermal coupling between the sensor
and the heater winding on the oven shell so
that high loop gain may be employed. The
oven structure should be well insulated, and
possess large heat capacity, to keep the rate of
change of temperature at a minimum.
Without good thermal coupling the tempera-
ture at the crystal oscillator will vary
considerably, due to heating of the control
circuit, resulting in poor frequency stability.
The operating temperature of the oven can be
changed by varying the value of one resistor
in the bridge circuit. This changes the balance
point and thus the operating temperature. A
well-designed single stage oven will give 0.1
deg to 1.0 deg C temperature stability over a

. wide ambient range.

Insulation is used in the oven around the
components to keep heat loss low and to
minimize temperature gradients within the
chamber. Generally, the gradients are propor-
tional to the power used in the heater. The
best insulation is a vacuum and the normal
way to achieve this is through use of a double
wall dewar flask. A less expensive and more
rugged method is the use of foam materiai;




however, heat loss is pgreater than in the
evacuated case.

The operating temperature of the oven
must be higher, usually by 10 deg to 15 deg
C, than the highest ambient temperature
expected. The actual operating temperature
of the oven must be adjusted to correspond to
the turn-over temperature of the crystal being
used in that oven.

In order to realize the best frequency-
stability performance possible with crystal-
controlled oscillators, double-oven tempera-
ture stabilizing techniques are employed
essentially to eliminate the effects of ambient
temperature changes on the frequency of
oscillation. A single, carefully-designed pro-
portionally controlled oven can maintain an
ambient ratio of the order of 500:1 (i.e.,
internal temperature change of 0.1 deg C for
an ambient range of 50 deg C). Consequently,
placing one such oven completely within
another of similar capability will result in an
overall ambient ratio of the order of 2.5 X
10%:1 (about 0.0002 deg C variation for a 50
deg C change in ambient). As a result,
frequency changes caused by ambient temper-
ature changes are reduced to be of the order
of 1 X 10712 /deg C, or even less.

If the best available overtone-mode crystal
units (i.e., fifth overtone, 5 MHz) are used in
oscillators of this type, and corresponding
care is observed in the design of a buffer
amplifier, voltage regulator, etc., the effects
of other ambient influences such as supply
voltage and load impedance can be made to
be of the same order as the effects of
temperature, with the result that crystal-con-
trolled oscillators are available whose output
frequency will remain stable within 1 X 107!
due to all causes — except shock vibration and
static acceleration — for periods of a day or
longer.

In order to achieve stability of this order,
the temperature control and voltage regulator
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circuits usually are placed inside the first, or
outer, temperature-stabilized enclosure along
with the RF buffer amplifiers. The crystal
unit and oscillator circuit are placed within
the second, or inner, oven enclosure,

For proper operation of a two-stage oven
system, the outer enclosure must be main-
tained at a temperature somewhat above the
highest ambient temperature to be en-
countered, and then the inner enclosure must
be held several degrees above the temperature
of the outer oven. This necessarily requires
that the turn-over temperature of the crystal
unit used in such an oscillator be controlied
carefully in manufacture since the operating
point of the inner oven must be adjusted very
accurately (within about 0.1 deg C) to the
turn-over temperature of the crystal. For
example, if an ambient range of 0° to 50°C is
specified, the operating temperature of the
outer oven would be chosen in the range of
60° to 65°C, and consequently the crystal
units should be specified to have turn-over
temperatures in the range of 70° to 75°C.

An oven stabilized oscillator is not on
frequency immediately after turn-on because
the oven must warm up to its operating
temperature before the crystal can be
stabilized at the turnover point. To obtain a
fast warmup characteristic, a separate warmup
heater and associated on-off thermostat are
used. A large amount of power is used for a
short time in the warmup heater, thus heating
the chamber quickly. The thermostat will cut
off a few degrees below the desired operating
temperature where the proportional control
takes over. Warmup times of 5 to 30 min,
from lowest ambient, are normal with a
power dissipation of 440 W during this
warmup time.

3-2.4 OSCILLATOR FOR SEVERE ENVI-
RONMENT

Phase coherence and spectral purity are
very important for stable frequency sources
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subject to high shock and vibration in missile
and space applications. Fig. 3-5% illustrates the
use of an oven to obtain the thermal stability
required. Particular attention is paid to the
mounting material which is often foam. Since
the environment requires a rather rigid
support, the g forces are transmitted to the
crystal vibrator which results in a frequency
shift. The rigidity of the support relaxes with
time and contributes to a high aging rate. For
frequencies of 10 MHz and up, stability of the
order of 1 part in 10!° per g is possible if the
shock and vibration frequencies are less than
the resonant resonance of the crystal
mounting system. Static acceleration causes,
as a rule of thumb, a relative frequency
change ‘of roughly 2 X 107 per g when the
acceleration vector is in the worst case
direction. Less than 1 X 107'° per g is
possible if the crystal unit can be oriented
precisely in the acceleration field. It has been
shown that the triple-ribbon supported
vibrator in the TO-5 transistor enclosure has
been found suitable for this class of service®.

3-2.5 PRECISION OSCILLATORS

For the greatest stability and lowest drift
rate, careful attention must be given to the
oscillator circuit and the highest precision
crystal unit must be used. Fig. 3-6% outlines
the necessary controls that must be used and
is typical of most precision oscillators on the
market today. A double oven with propor-
tional control is used to hold the temperature
constant and to ensure that no gradients exist
in the quartz plate (see par. 3-2.3). One factor
governing the stability of a crystal unit is that

THERMAL STABILIZER
r A

Figure 3-5. Oscillator for Severe '
Environments®
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Figure 3-6. Precision Crystal Controlled
Oscillator®

of amplitude of oscillation; therefore, a large
amount of feedback is used in the amplifier
and in the automatic gain control to maintain
a constant level of the oscillator signal. An
oscillator using the 2.5 MHz fifth overtone
crystal unit design has an average daily drift
rate as low as a few parts in 1019, and after
three weeks of operation, the aging is less
than 107 Hz per wk®. Design criteria for the
various crystal oscillators are discussed in par.
4-2.

3-3 TUNING FORK OSCILLATORS
3-3.1 APPLICATION

The tuning fork can be said to be one of
the oldest vibrating devices used for fre-
quency control. Tuning forks are not used in
new military equipment because crystals are
more stable. The only application is in
situations where cost is of prime importance.
Forks are much cheaper. They have been used
in such devices as precision clocks, reference
clocks in computers, navigation systems,
satellite timers, and central timekeeping
systems. One of the problems in its early
application was keeping the fork vibrating.
Ideally, the pickup and drive device for




maintaining vibrations should be loosely
coupled to the fork. Present practice uses a
magnetic transducer for both pickup and
drive functions.

The transducer consists of a magnet inside
a coil located close to the tine of the fork.
Changes in flux, due to the vibration, produce
a signal in the pickup coil. Conversely, a signal
applied to another transducer, also located
near the tine, will maintain motion. An
adequate amplifier connected between the
two will cause the fork to vibrate at the
proper frequency. Typical gains required of
the amplifier are 10 to 50 dB depending on
fork design!®.

3-3.2 NONTEMPERATURE CONTROLLED
OSCILLATOR

As a standard oscillator, a fork vibrates at
its fundamental, or lowest, resonant fre-
quency. By the positioning of the drive and
pickup coils, and by control of the oscillator
amplifier phasing, a tuning fork can be made
to oscillate at its second partial resonant
frequency, about six times the fundamental
frequency. At the higher mode, the tuning
fork exhibits a ¢ and a frequency stability
similar to those at its fundamental frequency.
Present forks have Q’s of 15,000 to 23,000 in
vacuum, and a temperature coefficient of
frequency in the range of 1/5 to 1/3 ppm/deg
C from —20° to 50°C. Fig. 3-71! shows the
modes of the fork motion when oscillating
both in its fundamental and in its first partial
mode.

3-3.3 TEMPERATURE CONTROLLED/
COMPENSATED OSCILLATORS

To help alleviate the effect of temperature
on frequency, alloys such as Ni-Span,
Vibraloy, Nivarox are used to produce low
temperature coefficients. These alloys are
heat-treated to adjust the coefficient. For
close coefficients over wide temperature
ranges, heat treating is not consistent enough
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Figure 3-7. Tuning Fork Vibrations

to allow the use of alloy forks for general
applications.

The most practical present method of
compensation is the use of a bimetallic fork
made of a laminate of a positive coefficient
Elinvar alloy and a negative coefficient steel
alloy. The coefficient then can be adjusted by
grinding one laminate or the other.

Another method to correct the tempera-
ture coefficient problem is to use an oven. In
this method, the fork is enclosed in a
proportional oven controlled by vacuum
tubes or transistors. At the present time,
temperature versus frequency tolerances of
+ 0.02% over the military temperature range
and + 0.001% in the room temperature range
are readily achieved!©.

3-3.4 EFFECTS OF OTHER ENVIRONMEN-
TAL FACTORS ON STABILITY

One of the environmental factors is fork
attitude. A fork with tines down runs faster
than one with tines up due to the effect of
gravity. Of all frequency instruments, forks
are the most susceptible to shock and
vibration. Various metheds to compensate for
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this include driving both tines with the coils
between the tines, having an internal stud
mounting in place of an external stud, and
using foamed materials or damped springs.

/

Forks are subject to aging just as crystals
are. Aged forks usually increase in frequency.
Presoaking fork assemblies at moderately high
temperatures provides a quick “aging” process
so that a unit can be made compatible with its
end use. In instances where precise adjust-
ments are required, the frequency can be
adjusted with a phase control. Variations up
to 200 parts in 10° are practical and more
than enough to compensate for future aging.
For design details of tuning fork oscillators,
see par. 4-3.

3-4 ATOMIC RESONANCE DEVICES
~ 34.1 ATOMIC ACTION

Atoms are capable of existing in several
different energy states that are the result of
different energy relationships between the
various components of the atom. The atom
can switch about among the different energy
states permitted to it, but to do so it must
absorb or emit energy. The relationship of
major interest, as far as atomic resonators are
concerned, is that between the nucleus of the
atom and its outermost or valence electrons.
The magnetic moment of these electrons may
be aligned either with or against the magnetic
field of the nucleus depending upon the
direction of spin of the electrons. It is these
two possible alignments that constitute the
hyperfine energy differences in the ground
state of the atom of concern here.

If a magnetic field of proper frequency is
applied to the atom, the magnetic moment of
the electron can be induced to switch its
alignment relative to the nuclear magnetic
field. Electrons in the lower of the two energy
states absorb energy and switch to the higher
state; electrons in the higher states are

3-10

stimulated to switch to the lower state by the
applied field, but in doing so they emit rather
than absorb energy. The emitted energy is of
the same frequency as the stimulating field.
The frequency of the magnetic field required
to cause alignment transitions is related to the
magnetic moment of the electron, the spin of
the electron, and the magnetic field of the
nucleus.

It should be noted that any quantity of
atoms will have approximately equal numbers
in each of the possible hyperfine levels of the
ground state. If an RF magnetic field is
applied, transitions from the lower level to
the higher level will approximately equal
those in the opposite direction. The RF
energy absorbed will equal the energy emitted
and there will be no sensible indication that
the transitions have taken place. It is
necessary, therefore, to work with a group of
atoms that are preponderantly in only one of
the two possible states. There are various
means of achieving this condition; the means
being suited to the particular type of
resonator in question (see par. 3-4.2.1).

Transition frequencies are the same for all
unperturbed atoms of a given substance, and
the band width over which the transitions
occur is quite narrow. It is this reproducibility
of frequency from atom to atom, along with
the extremely sharp resonance (Q =100
million) that has led to the development of
atomic resonators as precision time keeping
devices.

There are basically two methods of using
atomic resonators for time or frequency
control; viz., as passive resonators or as active
resonators. The passive resonator is. used to
determine and control the frequency of an
applied RF magnetic field. Active resonators,
on the other hand, actually generate an RF
signal from the energy emitted by the atoms
undergoing transition.




3-4.2 PASSIVE RESONATORS
3-4.2.1 Atomic Beam Resonators

Atomic beam resonators, as the name
implies, make use of atoms or molecules of
various substances in the form of a beam. This
beam, under proper magnetic manipulation, is
employed as an extremely precise frequency
determining element. The most extensively
developed form of beam resonator is the
cesium beam, which is the international
primary time standard. Considerable work
also has been done on the thallium beam. The
operation of the various atomic beams is quite
similar and, therefore, only the cesium beam
is discussed.

The cesium beam resonator consists essen-
tially of a source of cesium!33 atoms,
focusing magnets, a transition chamber, and a
detector. These components are enclosed in a
magnetically-shielded vacuum envelope and
are arranged as shown in Fig. 3-8 2. There are
two fundamental functions to be performed
within the resonator: (1) isolation of the
particular atoms that undergo the desired
transition from one energy level to another,
and (2) effecting and detecting the transition
itself.

When the RF generator that supplies the
energy to the transition chamber is tuned for
maximum detector output, its frequency will
be precisely the transition frequency. For a
cesium beam the exact frequency is
9,192,631,770 Hz or, as the second is
defined in terms of the cesium beam, it may
be more correct to say that 9,192,631,770
cycles of the cesium beam oscillator equals
one second of ephemeris time!3. The band
width of such a device is approximately 250
Hz.

3-4.2.2 Gas Cell Resonators
The operation of gas cell resonators, like

that of atomic beam resonators, is based upon
a hyperfine transition of atoms of certain
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alkali metals. The most extensively developed
type of gas cell employs rubidium?®?.
However, gas cells have been constructed
which use atomic hydrogen, sodium?3® or
cesium?! 33, Operation of these cells is similar
to that of the rubidium cell. The means used
for changing the energy states of the atoms in
gas cells is called optical pumping!*.

A passive resonator generally employs a
relatively low-frequency crystal oscillator as
its .primary source of RF energy. This
oscillator is variable over a limited range, and
the center frequency is usually a integral
number of kilohertz or megahertz. Frequency
multipliers and synthesizers are used to raise
the oscillator frequency to that required to
effect the desired transition. An alternate
method is to operate the crystal oscillator at a
submultiple of the transition frequency and
use the synthesizer to obtain the desired
standard frequency from the crystal oscilla-
tor. In either case, the signal applied to the
atomic resonator usually is phase modulated,
and a synchronous detection network is
incorporated in the output circuit of the
resonator. In this manner an error signal is
generated which is applied as a correction to
the crystal oscillator. The entire system is, in
effect, a servo controlled oscillator with a
highly specialized frequency determining
element. Circuit parameters are such that for
very short times the frequency stability is that
of the crystal oscillator and for long times
that of the atomic resonator. Time, in this
case, is relative to the response time of the
servo loop.

3-4.3 ACTIVE RESONATORS
3-4.3.1 Masers

A maser is an atomic or molecular device
that is capable of coherent amplification or
generation of electromagnetic waves. The
masers employed in precision timing applica-
tions are generally of the gaseous type and are
operated as oscillators. These oscillators
depend for their operation upon the energy
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emitted by atoms or molecules undergoing
transitions from a higher to a lower energy
state. They, therefore, require a continuous
supply of atoms or molecules in the desired
energy state which may be provided either as
a constant stream of selected atoms as in a
beam resonator or by optical pumping as in a
vapor cell.

The most extensively developed maser
oscillator for timing or frequency control
application is the atomic hydrogen maser. It
consists essentially of a source of atomic
hydrogen, a selecting magnet, a storage
chamber, a resonant cavity, a vacuum
envelope, and magnetic shields. The compo-
nents are arranged as shown in Fig. 3-915,

The hydrogen maser requires a continuous
stream of hydrogen atoms in the higher
energy level of the hyperfine state. These are
provided by passing molecular hydrogen
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SeLeCToR  RF cawry STORAGE {MAGNETIC
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Figure 3-9. Schematic Diagram of the
Hydrogen Maser! 5

through a dissociator that separates the
molecules into atoms. The atoms then are
passed through a focusing magnet that directs
atoms in the desired state into a storage bulb
while rejecting atoms in unwanted states.

Atoms entering the storage bulb are
confined inside for a brief period before they
can escape through the entrance. During this
period some of them will emit energy
spontaneously and make the transition to the
lower energy state. The energy emitted will
stimulate still more atoms to undergo
transitions and these, in turn, will release
more energy. When the resonant cavity is
tuned to the frequency of the emitted energy,
the occurrence of the transitions will be
pulled into phase with the electromagnetic
wave in the cavity. If enough transitions take
place to provide sufficient energy to over-
come the losses in the system, oscillation will
occur at the transition frequency. A coupling
loop in the cavity allows a small amount of
power to be drawn from this oscillation
without seriously disturbing the system. The
resonant frequency of the cavity is adjustable
over a small range so that it can be tuned
precisely to the transition frequency.

3-4.3.2 RF Qutput of Masers

Masers of the type used for frequency




control do not generate very large amounts of
power. Also, to avoid shifting the frequency
of the maser by variable loading, the output
coupling must be kept low and isolation of
the output circuitry must be provided. Useful
output signal is thus reduced to a very low
level. Higher level signals can be produced by
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phase locking the output of the maser to the
signal from a precision crystal oscillator.
Heterodyne circuits and frequency synthe-
sizers are used to convert the maser output to
the crystal frequency. In this manner an
integral frequency at a power of several
milliwatts is obtained.
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